- 1. State the claim mathematically. Then write the null and alternative hypothesis. Determine whether the hypothesis test is left-tailed, right-tailed, or two-tailed. . A research hospital claims that more than 3.7% of the population suffers from high blood pressure. Use p, the represent the population proportion. (4 points)

**Answer: Claim**:

** H**_{0} :

** H**_{a} :

**Test :**

b. The highest acceptable level of pesticide found in quail has been limited to 0.35 parts per million (ppm). A hypothesis test is perform to test if the level of the pesticide is higher. (4 points)

**Answer: Claim**:

** H**_{0} :

**H**_{a} :

**Test : **

**Section 7.2: Hypothesis Testing for the Mean (Large Samples)**

**Use the guidelines at the end of the project.**

- 2. Use the method specified to perform the hypothesis test for the population

mean m. WeatherBug say that the mean daily high for December in a large Florida city is F. WFLA weather suspects that this temperature is not accurate. A hypothesis test is performed the determine if the mean is actually lower than F. Assume that the population standard deviation of s = F. A sample of mean daily temperatures for December over the past 40 years gives F. At a = 0.01, does the data provide sufficient evidence to conclude that the mean temperature is lower than F.

a. **Use the critical value z**_{0} method from the normal distribution.

**(References: example 7 though 10 pages 385 - 388, end of section exercises 39 - 44 pages 392 - 393) **(6 points)

**1. ****H**_{0} :

**H**_{a} :

**2. ****a**** = **

**3. ****Test statistics: **

**4. ****P-value or critical z**_{0} or t_{0}.

**5. ****Rejection Region: **

** **

**6. ****Decision: **

**7. ****Interpretation: **

b. **Use the P-value method. **

**(References: example 1 though 5 pages 379 - 383, end of section exercises 33 - 38 pages 391 - 392) **(6 points)

**1. ****H**_{0} :

**H**_{a} :

**2. ****a**** = **

**3. ****Test statistics: **

**4. ****P-value or critical z**_{0 }or t_{0}.

**5. ****Rejection Region:**

**6. ****Decision:**** **

**7. ****Interpretation: **

**Section 7.3: Hypothesis Testing for Mean (Small Samples)**

- 3. A local tire store suspects that the mean life of a new discount tire is less that 39,000 miles. To check the claim, the store selects randomly 18 of these new discount tires. When they are tested, it is found that the mean life is 38,250 miles with a sample standard deviation s = 1200 miles. Assume the distribution is normally distributed.

a. Use the critical value t_{0} method from the normal distribution to test for the population mean m. Test the company's claim at the level of significance a = 0.05.

**(References: example 1 though 5 pages 397 - 401, end of section exercises 23 - 28 pages 404 - 405) **(6 points)

**1. ****H**_{0} :

**H**_{a} :

**2. ****a**** = **

**3. ****Test statistics: **

**4. ****P-value or critical z**_{0} or t_{0}.

**5. ****Rejection Region: **

**6. ****Decision: **

** **

**7. ****Interpretation: **

b. Use the critical value t_{0} method from the normal distribution to test for the population mean m. Test the company's claim at the level of significance a = 0.01

**(References: example 1 though 5 pages 397 - 401, end of section exercises 23 - 28 pages 404 - 405) **(6 points)

**1. ****H**_{0} :

**H**_{a} :

**2. ****a**** = **

**3. ****Test statistics: **

**4. ****P-value or critical z**_{0} or t_{0}.

**5. ****Rejection Region: **

**6. ****Decision: **

**7. ****Interpretation: **

**Section 7.4: Hypothesis Testing for Proportions.**

**(References: examples 1 through 3 pages 408 - 410, end of section exercises 9 - 14 pages 411 - 412) **(8 points)

**1. ****H**_{0} :

**H**_{a} :

**2. ****a**** = **

**3. ****Test statistics: **

**4. ****P-value or critical z**_{0} or t_{0}.

**5. ****Rejection Region: **

** **

**6. ****Decision: **

**Interpretation: **