How JustAnswer Works:
  • Ask an Expert
    Experts are full of valuable knowledge and are ready to help with any question. Credentials confirmed by a Fortune 500 verification firm.
  • Get a Professional Answer
    Via email, text message, or notification as you wait on our site.
    Ask follow up questions if you need to.
  • 100% Satisfaction Guarantee
    Rate the answer you receive.
Ask asciandwildlifebio Your Own Question
asciandwildlifebio, Graduate Student
Category: Homework
Satisfied Customers: 1803
Experience:  M.S. Bio, B.S. in Animal Science and Wildlife Biology. Comprehensive Spanish Written and Oral Skills
Type Your Homework Question Here...
asciandwildlifebio is online now
A new question is answered every 9 seconds

For: asciandwildlifebio Need help with a 4 page essay with

This answer was rated:

For: asciandwildlifebio
Need help with a 4 page essay with references on photosynthesis. Due by Friday 4/12/13. It needs to be original and with 3 references.
Please post all the details of the assignment so I can determine if I can complete the assignment for you!
Customer: replied 4 years ago.

Details are: maximum 4 page essay including work sited page

1. Intro

Body should include: 85% has to talk about technical terms

15% has to talk about the role that it plays (reactant/product)

Needs to be an easy to read essay, that a person that does not know about photosynthesis could understand it

Detailed chemistry

2. Talk about light dependent reaction

3. Talk about the Calvin Cycle

4. Conclusion

5. 3 References on a work sited page

Unfortunately I cannot complete this assignment within the given deadline for the amount it is valued. I would be willing to do it for $80. If you are willing to pay this, I will get started. If not, please let me know and I will opt out.
Customer: replied 4 years ago.

What if I change the deadline to 4/16/13. Would that work for you?

Unfortunately, no. Regardless of the deadline the question is undervalued.
Customer: replied 4 years ago.

I understand, would your work be original and meet all of the qualifications?

Customer: replied 4 years ago.

ok 80 dollars, you have till the 4/16/13 but If you finish earlier that will be greatly appreciated. Thank you so much.

You will have it by the 16th or earlier! :)
Customer: replied 4 years ago.

thank you!

Hey Frankie,
Your answer will be ready late this evening :)
Does the 4 pages include the reference page?
Customer: replied 4 years ago.
Okay, good to know :)

You need to spend $3 to view this post. Add Funds to your account and buy credits.
asciandwildlifebio and 2 other Homework Specialists are ready to help you
Customer: replied 4 years ago.

I cant open the file to vie it.

That's odd. Here it is copy and pasted. I'll make sure to lock the file following the rating. Use the above answer post for rating :)






All living organisms have a constant need to produce energy in order to power al the different forms of cell work. Cell work includes growth, respire, transport, and protein synthesis that aid in the metabolic function of an organism. Therefore, every organism has methods of obtaining, storing, and using energy. Organisms such as plants are considered autotrophs, as they can ‘self nourish’ or synthesize their own food. The process, by which autotrophs construct carbohydrates, or their food source, is through photosynthesis. Photosynthesis as defined by Campbell et al. 2008 is ‘ the conversion of light energy to chemical energy that is stored in sugars, or other organic compounds; occurs in plants, algae and certain prokaryotes.”

Photosynthesis can be summarized in reaction using the following chemical equation: 6 Carbon dioxide + 6 Water à glucose + 6 oxygen. The glucose produced in this process can be used immediately for cell respiration or converted into a storage form for future use. Plants store glucose as starch while animals store it as glycogen.

Respiration and photosynthesis are related. These two processes are in essence opposite reactions. Photosynthesis traps energy from sunlight in the chemical bonds of the glucose molecules. Cellular respiration then releases energy stored in the bonds and transfers it to a molecule of ATP. The process whereby carbon from the atmosphere is converted to glucose is called carbon fixation.

Photosynthesis consists of two different stages, the light-dependent reactions and the dark-dependent reactions. Light-dependent reactions occur in in the grana of a chloroplast. Grana are columns of stacked thylakoid discs that are distributed throughout the stroma, and the stroma is a semifluid internal substance similar to that of cytoplasm. Light reactions undergo several processes that are ordered as follows: photosystem II, electron transport chain, photosystem I, electron transport chain. During these photosynthesis processes hydrogen ions build up inside the discs, and as they pass across the disc membrane and back into the stroma, ATP is produced. Then, in the stroma the ATP is used to produce glucose. The photosynthetic pigments absorb light energy that is then used to split a water molecule. The electrons released from the slit water molecule are transferred to NADP+ forming NADPH and ATP. The oxygen left over from the split water molecule is released as a byproduct. NADPH and ATP pass to the next stage of photosynthesis, the dark reactions.

The dark reactions, also called the Calvin Cycle, occur in the stroma of the chloroplast. During this stage carbon dioxide is fixed into glucose molecules using the NADPH and ATP from the light-dependent reactions. This how the Calvin cycle begins, and is commonly referred as carbon fixation. While the light-dependent reactions received its names based on the fact that it requires light, the dark reactions received their name because this phase does not require light. Dark reactions will occur whenever there is carbon dioxide, NADPH, and ATP. This reaction doesn’t require dark conditions but can occur when light conditions do not exist.

At the on start of the Calvin cycle, carbon fixation occurs. One at a time, 3 molecules of carbon dioxide enter the system and react with the enzyme Rubisco. Three short lived intermediate molecules form 6 3-phosphoglycerates and at this point 6 ATPS inter the system and use these molecules to form 6 ADP. Next, a 1,3-biophosphoglycerates is formed and reduction occurs when NADPH is added to system, thereby releasing 6 NADP+ and 6P. Form this reaction glyceraldehyde 3-phosphaste is formed, which allows for 1 glucose molecule and other organic compounds to be formed and leave the system. After this, the carbon dioxide acceptor needs to be regenerated. The G3P receives 3 ATP and this forms 3 ADP, which leaves the system. After this the ribulose biphosphate is formed and the rubisco can now accept more carbon dioxide and allow the cycle to occur again.

There are some important differenced between light and dark reactions. Molecules in the thylakoid membranes carry out light reactions, where as dark reactions take place in the stroma. In light reactions, light energy is converted to chemical energy in the form of ATP and NADPH, where as dark reactions use AT and NADPH to convert carbon dioxide to the sugar G3P. Lastly, in light reaction water is split to release oxygen to the atmosphere, where as in Calvin reactions, ADP, inorganic phosphate, and NADP+ are returned to the light reactions.

Kingdom Plantae is perhaps one of the most diverse kingdoms in scientific nomenclature. Despite the diversity within, all plants utilize the processes of photosynthesis to gain nutrition in order to survive and reproduce. By plants being autotrophs and being able to create energy in a variety of conditions (i.e. light, temperature, soil acidity), they promote their own fitness. It could be argued that in some ways autotrophs are more fit than heterotrophs, which must rely on external sources for energy and ultimately survival. This is proven in numerous fields of science and especially those, which express how autotrophs, or primary producers, fuel an entire ecosystem. The ability for photoautotrophs to use both light and dark reactions to function properly is essential not only to the maintenance of their life, but to ours, too.


Campbell, Neil A., and Jane B. Reece. Biology, (2008). Vol. 98. No. 124. Benjamin Cumming's Publishing Company., 1984.

Farabee, M. J. "PHOTOSYNTHESIS." PHOTOSYNTHESIS. Maricopa University, 2007. Web. 14 Apr. 2013.

Mayer, G. (2006). Biological Principles. Cache House: Boca Raton, 167p.

Customer: replied 4 years ago.

ok, give me a couple of days to read it and review it and yes, to answer your question I will adjust the value of the question using the bonus feature because it will be easier for me.

Sure! If you have questions or concerns, please do not hesitate to ask :)
Customer: replied 4 years ago.


Customer: replied 4 years ago.

Thank you so much for your hard work! I still have not heard from my teacher. But would like to pay you now. Can you still answer questions
if you lock this answer? Also could you make any changes if needed?

I can still answer questions, but in order to do so, you will have to create a new post. I can make changes because I have the file saved to my computer (and you should, too :) )
Customer: replied 4 years ago.

ok can you please lock this answer and I will get back to you on a new post if I need to. I just feel bad that you had to wait this long to get paid. let me know if the tip went through.

The tip did go through, thank you!!

***Moderators please lock the answer posts***

Related Homework Questions