How JustAnswer Works:

  • Ask an Expert
    Experts are full of valuable knowledge and are ready to help with any question. Credentials confirmed by a Fortune 500 verification firm.
  • Get a Professional Answer
    Via email, text message, or notification as you wait on our site.
    Ask follow up questions if you need to.
  • 100% Satisfaction Guarantee
    Rate the answer you receive.

Ask Enes Your Own Question

Enes
Enes, Volvo Technician
Category: Car
Satisfied Customers: 4969
Experience:  15 YEARS WITH VOLVO AS THE MASTER VOLVO MECHANIC&ASE
20168386
Type Your Car Question Here...
Enes is online now
A new question is answered every 9 seconds

Hello can anyone tell me the methods of sealing the combustion

Resolved Question:

Hello can anyone tell me the methods of sealing the combustion chamber, fuel and ignition systems. Thanks
Submitted: 2 years ago.
Category: Car
Expert:  Enes replied 2 years ago.
Hello and welcome to Justanswer.com my name isXXXXX'm a Certified Car Expert Mechanic.I'm going to try to help you find the help you need.WHAT YOU TRYING TO DO ?
Customer: replied 2 years ago.

Hello Enes im not actually doing anything its a school question on an assignment. Im aware that the valves and piston seal the combustion chamber but i got a bit blank as for any more methods especially the fuel and ignition systems. I guess its staring me in the face but there we have it.

Expert:  Enes replied 2 years ago.

Please remember to rate my answer.IF you feel the need to click either"Helped a little"or"I expected more"please STOP that is Negative feedback to me. Reply to me via the REPLY or CONTINUE CONVERSATION

In a gasoline engine, a mixture of gasoline and air is sprayed into a cylinder. This is compressed by a piston and at optimal point in the compression stroke, a spark plug creates an electrical spark that ignites the fuel. The combustion of the fuel results in the generation of heat, and the hot gases that are in the cylinder are then at a higher pressure than the fuel-air mixture and so drive the piston back down. These combustion gases are vented and the fuel-air mixture reintroduced to run a second stroke. The outward linear motion of the piston is ordinarily harnessed by a crankshaft to produce circular motion. Valves control the intake of air-fuel mixture and allow exhaust gasses to exit at the appropriate times.

Four-Stroke
The four-stroke internal combustion engine is the type most commonly used for automotive and industrial purposes today (cars and trucks, generators, etc). On the first (downward) stroke of the piston, fuel/air is drawn into the cylinder. The following (upward) stroke compresses the fuel-air mixture, which is then ignited - expanding exhaust gases then force the piston downward for the third stroke, and the fourth and final (upward) stroke evacuates the spent exhaust gasses from the cylinder.

The four-stroke cycle is more efficient than the two-stroke cycle, but requires considerably more moving parts and manufacturing expertise.

 

This is an animated computer drawing of one cylinder of the Wright brothers' 1903 aircraft engine. This engine powered the first, heavier than air, self-propelled, maneuverable, piloted aircraft; the Wright 1903 Flyer. The engine consisted of four cylinders like the one shown above, with each piston connected to a common crankshaft. The crankshaft was connected to two counter-rotating propellers which produced the thrust necessary to overcome the drag of the aircraft.

The brothers' design is very simple by today's standards, so it is a good engine for students to study to learn the fundamentals of engine operation. This type of internal combustion engine is called a four-stroke engine because there are four movements, or strokes, of the piston before the entire engine firing sequence is repeated. The four strokes are described below with some still figures. In the animation and in all the figures, we have colored the fuel/air intake system red, the electrical system green, and the exhaust system blue. We also represent the fuel/air mixture and the exhaust gases by small colored balls to show how these gases move through the engine. Since we will be referring to the movement of various engine parts, here is a figure showing the names of the parts:

Computer drawing of the Wright 1903 aircraft engine showing the  labeled parts in a single cylinder.

 

Intake Stroke

The engine cycle begins with the intake stroke as the piston is pulled towards the crankshaft (to the left in the figure).

Computer drawing of the Wright 1903 aircraft engine showing the  piston motion and fuel/air being drawn into the cylinder.

 

The intake valve is open, and fuel and air are drawn past the valve and into the combustion chamber and cylinder from the intake manifold located on top of the combustion chamber. The exhaust valve is closed and the electrical contact switch is open. The fuel/air mixture is at a relatively low pressure (near atmospheric) and is colored blue in this figure. At the end of the intake stroke, the piston is located at the far left and begins to move back towards the right.

Computer drawing of the Wright 1903 aircraft engine showing the  piston motion at the end of the intake stroke.

 

The cylinder and combustion chamber are full of the low pressure fuel/air mixture and, as the piston begins to move to the right, the intake valve closes.

Historical note - The opening and closing of the intake valve of the Wright 1903 engine was termed "automatic" by the brothers. It relies on the slightly lower pressure within in the cylinder during the intake stroke to overcome the strength of the spring holding the valve shut. Modern internal combustion engines do not work this way, but use cams and rocker arms like the brothers' exhaust system. Cams and rocker arms provide better control and timing of the opening and closing of the valves.

Compression Stroke

With both valves closed, the combination of the cylinder and combustion chamber form a completely closed vessel containing the fuel/air mixture. As the piston is pushed to the right, the volume is reduced and the fuel/air mixture is compressed during the compression stroke.

Computer drawing of the Wright 1903 aircraft engine showing the  piston motion during the compression stroke.

 

During the compression, no heat is transferred to the fuel/air mixture. As the volume is decreased because of the piston's motion, the pressure in the gas is increased, as described by the laws of thermodynamics. In the figure, the mixture has been colored yellow to denote a moderate increase in pressure. To produce the increased pressure, we have to do work on the mixture, just as you have to do work to inflate a bicycle tire using a pump. During the compression stroke, the electrical contact is kept opened. When the volume is the smallest, and the pressure the highest as shown in the figure, the contact is closed, and a current of electricity flows through the plug.

Power Stroke

At the beginning of the power stroke, the electrical contact is opened. The sudden opening of the contact produces a spark in the combustion chamber which ignites the fuel/air mixture. Rapid combustion of the fuel releases heat, and produces exhaust gases in the combustion chamber.

Computer drawing of the Wright 1903 aircraft engine showing the  piston at the time of combustion.

Because the intake and exhaust valves are closed, the combustion of the fuel takes place in a totally enclosed (and nearly constant volume) vessel. The combustion increases the temperature of the exhaust gases, any residual air in the combustion chamber, and the combustion chamber itself. From the ideal gas law, the increased temperature of the gases also produces an increased pressure in the combustion chamber. We have colored the gases red in the figure to denote the high pressure. The high pressure of the gases acting on the face of the piston cause the piston to move to the left which initiates the power stroke.

Computer drawing of the Wright 1903 aircraft engine showing the  piston motion during the power stroke.

 

Unlike the compression stroke, the hot gas does work on the piston during the power stroke. The force on the piston is transmitted by the piston rod to the crankshaft, where the linear motion of the piston is converted to angular motion of the crankshaft. The work done on the piston is then used to turn the shaft, and the propellers, and to compress the gases in the neighboring cylinder's compression stroke. Having produced the igniting spark, the electrical contact remains opened.

During the power stroke, the volume occupied by the gases is increased because of the piston motion and no heat is transferred to the fuel/air mixture. As the volume is increased because of the piston's motion, the pressure and temperature of the gas are decreased. We have colored the exhaust "molecules" yellow to denote a moderate amount of pressure at the end of the power stroke.

Computer drawing of the Wright 1903 aircraft engine showing the  piston motion during the power stroke.

Historical note - The method of producing the electrical spark used by the Wright brothers is called a "make and break" connection. There are moving parts located inside the combustion chamber. Modern internal combustion engines do not use this method, but instead use a spark plug to produce the ignition spark. A spark plug has no moving parts, which is much safer than the method used by the brothers.

Exhaust Stroke

At the end of the power stroke, the piston is located at the far left. Heat that is left over from the power stroke is now transferred to the water in the water jacket until the pressure approaches atmospheric pressure. The exhaust valve is then opened by the cam pushing on the rocker arm to begin the exhaust stroke.

Computer drawing of the Wright 1903 aircraft engine showing the  piston motion during the exhaust stroke.

The purpose of the exhaust stroke is to clear the cylinder of the spent exhaust in preparation for another ignition cycle. As the exhaust stroke begins, the cylinder and combustion chamber are full of exhaust products at low pressure (colored blue on the figure above.) Because the exhaust valve is open, the exhaust gas is pushed past the valve and exits the engine. The intake valve is closed and the electrical contact is open during this movement of the piston.

Computer drawing of the Wright 1903 aircraft engine showing the  piston motion during the exhaust stroke.

At the end of the exhaust stroke, the exhaust valve is closed and the engine begins another intake stroke.

HERE IS VIDEO TO PICTURE PROCESS

 

http://www.youtube.com/watch?v=V-z-R8Mv_HM

 

DONT FORGET TO RATE ME POSITIVE IF YOU CAN PLEASE THANK YOU

Enes, Volvo Technician
Category: Car
Satisfied Customers: 4969
Experience: 15 YEARS WITH VOLVO AS THE MASTER VOLVO MECHANIC&ASE
Enes and 5 other Car Specialists are ready to help you

JustAnswer in the News:

 
 
 
Ask-a-doc Web sites: If you've got a quick question, you can try to get an answer from sites that say they have various specialists on hand to give quick answers... Justanswer.com.
JustAnswer.com...has seen a spike since October in legal questions from readers about layoffs, unemployment and severance.
Web sites like justanswer.com/legal
...leave nothing to chance.
Traffic on JustAnswer rose 14 percent...and had nearly 400,000 page views in 30 days...inquiries related to stress, high blood pressure, drinking and heart pain jumped 33 percent.
Tory Johnson, GMA Workplace Contributor, discusses work-from-home jobs, such as JustAnswer in which verified Experts answer people’s questions.
I will tell you that...the things you have to go through to be an Expert are quite rigorous.
 
 
 

What Customers are Saying:

 
 
 
  • I would (and have) recommend your site to others I was quite satisfied with the quality of the information received, the professional with whom I interacted, and the quick response time. Thanks, and be sure that I'll be back whenever I need a question answered in a hurry. Stephanie P Elm City, NC
< Last | Next >
  • I would (and have) recommend your site to others I was quite satisfied with the quality of the information received, the professional with whom I interacted, and the quick response time. Thanks, and be sure that I'll be back whenever I need a question answered in a hurry. Stephanie P Elm City, NC
  • used your service this weekend with "Trecers" help. thank you ,thank you, thank you. replaced an A/C fan motor. Local Auto Zone had part. $15.00 "tracer" fee and $40.00 for parts, I saved several hundreds of dollers at a shop. i will recommend you and use you in the future. David L. Richmond, TX
  • 9 dollars, 2 hours of my time, and I drove away. Your diagnosis was right on the mark. Thank you so much. Phil Marysville, CA
  • Lurch. Thank you very much. I had real doubts about this website but your promptness of response, quick followup and to the point answer with picture was incredible. Charles Walnut Creek, CA
  • As a single woman, I really appreciate an excellent and affordable opinion.
    Thank you Geordie, I will not hesitate to contact justanswer in the future!
    Sue Charleston, WV
  • Another great insight to what may be the problem. I will have my mechanic take a look at it tomorrow. Thanks again, Frank...you do indeed know your stuff. Jim Castleberry, FL
  • Excellent reply, and also very quick. Really sounds like the Expert knows what he is talking about. I will be back to use your service when I need more help with my RV. Dutch USA
 
 
 

Meet The Experts:

 
 
 
  • Chris (aka-Moose)

    Technician

    Satisfied Customers:

    846
    16 years of experience
< Last | Next >
  • http://ww2.justanswer.com/uploads/MU/muddyford/2012-6-13_1204_1.64x64.png Chris (aka-Moose)'s Avatar

    Chris (aka-Moose)

    Technician

    Satisfied Customers:

    846
    16 years of experience
  • http://ww2.justanswer.com/uploads/TE/TedG/2012-6-15_14759_avaLarge.64x64.jpg Ted G.'s Avatar

    Ted G.

    ASE Certified Technician

    Satisfied Customers:

    1596
    20 years auto repair experience, ASE Master Tech, Mechanical Failure consultant, Expert Witness
  • http://ww2.justanswer.com/uploads/joecamel90/2008-11-13_03615_head_shot.jpg George H.'s Avatar

    George H.

    ASE Certified Technician

    Satisfied Customers:

    1311
    ASE Master Tech 15+ yrs, AAS Automotive Technology, Factory trained Asian specialist
  • http://ww2.justanswer.com/uploads/AM/amedee/2013-10-24_23656_Amedee1.64x64.jpg Amedee's Avatar

    Amedee

    ASE Master Tech

    Satisfied Customers:

    2367
    ASE Master Tech advanced level specialist
  • http://ww2.justanswer.com/uploads/SU/supermechanic/2013-8-23_03546_500.64x64.jpg Jerry's Avatar

    Jerry

    Master Mechanic

    Satisfied Customers:

    1906
    ASE master, 30+ years. All makes and models. Trouble shooter, shop forman, service manager
  • http://ww2.justanswer.com/uploads/CR/crzydrvr00/2013-11-3_12123_246347.64x64.jpg Richard's Avatar

    Richard

    ASE Certified Technician

    Satisfied Customers:

    942
    12 years Ford Lincoln/Mercury Jaguar dealership as a technician and shop foreman reparing all makes
  • http://ww2.justanswer.com/uploads/ST/Steve7654/2012-6-5_215929_japic800x660.64x64.jpg Steve's Avatar

    Steve

    Auto Service Technician

    Satisfied Customers:

    1980
    25+ yrs experience as a professional working technician; ASE L1 master technician